US009335943B2

a2 United States Patent

Sahita et al.

US 9,335,943 B2
May 10, 2016

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND APPARATUS FOR FINE
GRAIN MEMORY PROTECTION

(52) US.CL
CPC

GO6F 3/0622 (2013.01); GO6F 3/0637
(2013.01); GOGF 3/0673 (2013.01); GO6F

(71) Applicant: Intel Corporation, Santa Clara, CA 9/45558 (2013.01); GOGF 12/109 (2013.01);
(US) GOGF 2009/45583 (2013.01); GOGF 2212/657
(72) Inventors: Ravi L. Sahita, Beaverton, OR (US); (2013.01)
Vedvyas Shanbhogue, Austin, TX (US); (58) Field of Classification Search
Gilbert Neiger, Hillsboro, OR (US); None
Jonathan Edwards, Santa Clara, CA See application file for complete search history.
(US); Ido Ouziel, Ein Carmel (IL);
Barry E. Huntley, Hillsboro, OR (US); (56) References Cited
Stanislav Shwartsman, Haifa (IL);
David M. Durham, Beaverton, OR U.S. PATENT DOCUMENTS
(US); Andrew V. Anderson, Forest 2002/0082824 AL* 6/2002 Neiger oo, GOGF 9/45537
Grove, OR (US); Michael Lemay, 704/2
Hillsboro, OR (US) . .
* cited by examiner
(73) Assignee: INTEL CORPORATION, Santa Clara, . .
CA (US) Primary Examiner — Duc Doan
(74) Attorney, Agent, or Firm — Nicholson De Vos Webster
(*) Notice: Subject to any disclaimer, the term of this & Elliott LLP
patent is extended or adjusted under 35
U.S.C. 154(b) by 71 days. 7 ABSTRACT
An apparatus and method for fine grain memory protection.
(21) Appl. No.: 14/320,334 For example, one embodiment of a method comprises: per-
. forming a first lookup operation using a virtual address to
(22) Filed: Jun. 30,2014 identify a physical address of a memory page, the memory
(65) Prior Publication Data page comprising a pl}]ra.lity of sub-pages; determining
whether sub-page permissions are enabled for the memory
US 2015/0378633 Al Dec. 31, 2015 page; if sub-page permissions are enabled, then performing a
second lookup operation to determine permissions associated
(51) Int.CL with one or more of the sub-pages of the memory page; and
GOG6F 21/00 (2013.01) implementing the permissions associated with the one or
GOG6F 3/06 (2006.01) more sub-pages.
GO6F 12/10 (2016.01)
GO6F 9/455 (2006.01) 24 Claims, 12 Drawing Sheets
PIPELINE 100
= _———— it
FETCH DE%%%T":*G DECODE|ALLOC. RENAMING| SCHEDULE RE{%/%IER EXECUTE STAGE ﬁgﬁgﬁsw ?ENESJL%’{ commi |
102 17 106 | 108 | 110 112 EMomREAD 116 W1R1|gE | 1% :
s e e e s P W —

iINSTRUCTION CACHE UNIT 134 |4

BRANCH PREDICTION |
UNIT 132

FRONT END UNIT
130

CORE 190
\

INSTRUCTION TLB UNIT 136 [

¥
INSTRUCTION FETCH 138]
b

DECODE UNIT 140 |

EXECUTION ENGINE
UNIT 150
RN, S —
r RETIREMENT UNIT
154

1
p F

.y

I
I
I PHYSICAL REGISTER FILES UNIT(S) 158
|
|

¥ ¥

EXECUTION MEMORY
UNIT(S) ACCESS
162 UNIT(S) 164
EXECUTION CLUSTER(S) 160 &
DATA TLG UNIT]
MEMORY 172 CACHE
UNITA70 | DATA CACHE ONTT uNT [
174 176

US 9,335,943 B2

Sheet 1 of 12

May 10, 2016

U.S. Patent

“ |

9.l

A

1INN LINA FHOVO Wivd | OZL LINN

[ZX"

JHOVO

21 LINA g1 ViVd

aLi AJONEN

y 091 (S)¥31SNT1D NOILNDAXA

$91 (S)LIND 291
$8300V (S)LINP
AJOW3N NOILNOFXT

A ry

851 (S)LINN ST ¥3LSI9FY OIS

IIHI._ |

!
o AN
Z50 LINN !
! HOIVOOTIV /AWYNIY | 05} LINN

|

|
AHd |
vl |

INIONI NOLLNDIXd

_ 04 LINN 300230 _

i

| 91 HO134 NOLLONYLSNI _

i

9€} LINN G1L NOILLONYLSNI

0g}
1IN ON3 INOYHS

TL_PEL LINN FHOVO NOLLONYLSNI

¢€l 1INN
NOILOIJ3dd HONVHE

0L 8Ll

3LIR-IM
AHOWAN
MIvE FLINM

|
ONITANYH
HANOD o1 14303

R I

vil
all V3 AYOWIN
JOVIS 3INJIX3 1Qv3y

H3LSIO3Y

g1 'old

/ 061 3402

47’) 801
FINAZHIS [ONINYNTY 00TV

Vi "Old

901
314033d

y0l
ONIG0O3Q
HLONA

00L INM3dd ~——

US 9,335,943 B2

Sheet 2 of 12

May 10, 2016

U.S. Patent

| #1Z(S)LINN ﬁ_
| ¥ITIONINOD |
912 (SMLINN “ DMWM_\%_\H_Z_ |
MITIONINOD | SF2Ve9aNL 1
sng
012 LINN
INIOV WIALSAS

902 (S)LINN IHOVD QIFYVHS

- 1

| nroz | W0z
LEIUNN | ' aaa| | (S)INN
| 3Howo “ 3HOVD
NZ0Z 0D | V202 3400

¢'old
80 01901
4S0dyNd
VI03dS _
/ 00¢ 40SS300Hd

U.S. Patent May 10, 2016 Sheet 3 of 12 US 9,335,943 B2

315
300 - — — 17
— 310

| i 1
|
r I: — PROCESSOR [— — 7
| B / e |
| s | _— 34
o CONTROLLER
co- - —'—H@m— t —1 MEMORY
|PROCESSOR |_GMCH 390 |_
| T
T P
0 . 10H350 |
|
| |

FIG. 3

US 9,335,943 B2

Sheet 4 of 12

May 10, 2016

U.S. Patent

v1vd 914
82y —— 0cp
ANV 3d09 | s3om3a | 3snow
JOVHOLS VIVa Ly WINOD eey /34YOgAIN
0zy ¢
Gl ¥Zy piy 8Ly
¥0SSI00Nd o/ olany S30IA3A O 30aI¥g Snd
oy —/ —— — |
96y —1 z6y —1 3 _ gey
1
g6y —1 d-d 06% 13SdIHO d-d L ey _mo%m_oomaoo_
767 — — —
bSy 259
—
08P d-d d-d d-d d-d 0%
98y — gy — \ \ Lo
8Ly
0S¥
—28Y wur—z
oI NI
yEY 2ey
AJOWIN AMOWIN
¥0SSI0YA0D
/40SS3V0¥d ¥0SS3004d

/ 0oy

US 9,335,943 B2

Sheet 5 of 12

May 10, 2016

U.S. Patent

14974
AHOWIN

IA% %
AJONZN

$'Old
§i5
0/l AOY93T
06¥ 96y —1 4/l
66y — dd 13SdIHD ooy —— drd
o —1 g 25—
E—
08Y d-d d-d d-d d-d 0Ly
98y — %vL \ \ oLy rsv
S
— 89 Ur—
1 ae)
¥0SS3004d H0SS300¥d
—_——
_ e |
| s3oinaaon '

—— saassssannnns el

/ 005

US 9,335,943 B2

Sheet 6 of 12

May 10, 2016

U.S. Patent

15 (SILINN
0v9 0€9 H3ITI0HLNOD
LINN AVTdsia | | 94NN YING LINN VS AYOWAW
J3LVHOILINI
916 (S)LINN — > |
H3TIONINGD [209(SIINA IOINNODRAINT |
sng ,
| |
_ 906 (S)LINN IHOVD AIHVHS _
F———=—r—— -
===
L1 npos Vb05
_ | (SluNn | _ cma | |(S)LNN
01 LINN | Ao HOVO
INIOV WILSAS | Ne0G 3400 v20S 3409

019 40SS300dd NOILVIIddV

029 (S)40SS3004d02

/ 009

dIHO ¥V NO W31SAS

9914

US 9,335,943 B2

Sheet 7 of 12

May 10, 2016

U.S. Patent

¥0L ¥31dNOD 98X

904 340D AYVNIF 98X

L'Old

€04 FOVNONVT TIAITHOIH

JdYML40S
FHVMAHYH

911
3400 13S NOILONYLSNI
98X ANO LSY31
1V HLIM HOSS300dd

¢ HALHIANOD
NOILONYLSNI

80 HTIdNOD
13S NOILONYLSNI
JAILYNEILTY

0143003 AYYNIE
13S NOILONYLSNI
JALLYNEFLY

v14 3400 13S NOILOMHLSNI
98X NV LNOHLIM ¥0SS300dd

US 9,335,943 B2

Sheet 8 of 12

May 10, 2016

U.S. Patent

-

8 ‘'Did
4 ™
078
10SSa301d
\ Z
4 N\
>>m_>wmccm_>_ folo MMM an m%%>
018 aded-gns iod d-ans AlowsAl 12Y10
(3004-XINA)
WA _/ “
- “ .)
1
\ 4 1
A >
< A=\
< [\
a8y Alundas //
T BODDE
N SJUdAT IA ”.”._.”.m.m..n.m..” 4..// M
NN
a8ed Ao
108 208 d W
(1004-uou XIAIA)
[2u4a)|

US 9,335,943 B2

Sheet 9 of 12

May 10, 2016

U.S. Patent

6 ‘OI4

S16
(s)a19eL [earydsesaiH
1dds
N
v
3nsay 016 |mT o Tm T _
2320-ns dds < A
TT6 SOWA
ssaippy A A
|edisAyd a8ed |
(g1Lu1y) m
1 0 vd PYA !
1 1 €vd EVA _
506 606
0 1 vd [A/i (4 >
Alem a3ed g1L
0 0 Tvd VA

uoIsSIwIad M
]

ajqeul dds
J

ssaippy sAyd
f

SS2UPPY MIA
i

!

Y06

!

€06

!

06

!

106

// 006

3|qeL a8ed
Aloway

US 9,335,943 B2

Sheet 10 of 12

May 10, 2016

U.S. Patent

1001
11g uoIssiuLIad

aIM

e
:

B (01094 43 45 19 b9 |

v

b1

(sua g)
188}0 uoiBey (s1g 6)
19syo Anug

paAasal | 1|} ‘suq Jaddn

sy

(s1 6)
18s4j0 Ajug

0T "Sid

panasal 1)} ‘suq Jeddn

paaasal ||} ‘syq saddn

L

rem———

9a6) B
Jesyo Aiu3 (S0 6) (s)

i

1esyo Ajug

g1

1iq uasald - d

peniasal ||| ‘suq teddn

18sjjo Az

16
diddS

US 9,335,943 B2

Sheet 11 of 12

May 10, 2016

U.S. Patent

TT *Old

SOt
AINO SNOISSIANYId 1IATT-IOVd AlddV

A

VOtTt
39Yd-9NS HOV3 404 SNOISSINY3d LININITdINI
O1 SNOISSINY3d 13A3T-3DVd HLIM ddS INIGINOD

\

€011
SNOISSINYId 35Vd-aNS INIWY3LId
0L dMAOO0T LddS INd0O44d3d

<01t

¢0379VN3 ddS

T01T
AYLN3 378VL 35Vd FAINYILIY

A

ﬁ ER-\ AR w

US 9,335,943 B2

Sheet 12 of 12

May 10, 2016

U.S. Patent

<1 'Ol
- ddS apis elep ON - pamoj|e XMY T T T
»=Aua
/Pe3Yd - ppo TX/2UIM — uan] ddS apIs eiep ON — pamoje MY 0 T T
AUIG/pesy — PPO ‘AX/FIUA - uang ddS S1UM T 1 T
AUTG/peay - ppOo TX/HIM - uanj ddS 29X3/91UM 0 T T
Aung
/PE3Y — PPO ‘x=0X/2UIM — UdA] dds peay T 0 T
Aung
/PE3Y — PPO TX/2IUM — UdAJ ddS 29x3/peay 0 0 T
Aung
/PE3Y — PPO ‘x=0X/2UIM — UdA] dds peay T 0 T
Aug
/PE3Y — PPO TX/OIIM —~ UdA] ddS 29x3/peay 0 0 T
103097 1] ddS uonejsidisiug ax Y dds
0zt
1021
24BD 1,UOpP=, ‘DJQBSIP 29X9=QX ‘M=M ‘Peay=y pusda] 10129A g ddS
ax/m a/yd ax/m a/yd ax/m a/y ax/m a/d
0 sod €9 504

US 9,335,943 B2

1
METHOD AND APPARATUS FOR FINE
GRAIN MEMORY PROTECTION

BACKGROUND

1. Field of the Invention

This invention relates generally to the field of computer
processors. More particularly, the invention relates to an
apparatus and method for fine grain memory protection.

2. Description of the Related Art

A virtual-machine system is a computer system that
includes a virtual machine monitor (VMM) supporting one or
more virtual machines (VMs). A Virtual Machine Monitor
(VMM) is a software program that controls physical com-
puter hardware and presents programs executing within a
Virtual Machine (VM) with the illusion that they are execut-
ing on real physical computer hardware. Each VM typically
functions as a self-contained platform, controlled by a
“guest” operating system (OS), i.e., an OS hosted by the
VMM, which executes as if it were running on a real machine
instead of within a VM.

To accomplish this simulation, it is necessary for some
operations within a VM (e.g., attempts to configure device
hardware) to be trapped and emulated by the VMM, which
will perform operations to simulate virtual hardware
resources (e.g., a simulated device) to maintain the illusion
that the guest OS is manipulating real hardware. Thus, in a
virtual-machine system transitions from a VM to the VMM
and back will occur with some frequency, depending upon the
number of instructions and events that the VMM must emu-
late.

In a virtual-memory system, a memory address generated
by software (a “virtual” address) is translated by hardware
into a physical address which is then used to reference
memory. This translation process is called paging, and the
hardware used to perform the translation is called the paging
hardware. In many virtual-memory systems, the virtual-to-
physical address translation is defined by system software in
a set of data structures (called “page tables”) that reside in
memory. Modern virtual-memory systems typically incorpo-
rate into a system’s central processing unit (CPU) a special-
ized caching structure, often called a translation lookaside
buffer (TLB), which stores information about virtual-to-
physical address translations and which can be accessed far
more quickly than memory.

When an OS stops executing one process and begins
executing another, it will typically change the address space
by directing the hardware to use a new set of paging struc-
tures. This can be accomplished using a software or hardware
mechanism to invalidate or remove the entire contents of the
TLB. More frequent than changes between processes are
transitions of control between a process and OS software.
Because of this, system performance would suffer signifi-
cantly if the TLB were invalidated on each such transition.
Thus, modern operating systems are typically constructed so
that no change of address space is required. One or more
ranges of (virtual) memory addresses in every address space
are protected so that only the OS can access addresses in those
ranges.

Some virtual-machine systems may support layers of
VMMs. For example, a single VMM, sometime referred to as
avirtual machine extension (VMX) root, directly controls the
CPU. This VMX root may support, in guest VMs, other
“guest” VMMs that may themselves support guest VMs. The
support for layering may be provided by software, hardware,
or a combination of the two.

10

20

25

40

45

55

60

2

VMMs may monitor runtime data-structure integrity at the
page level. That is, read/write privileges and other memory
policies are implemented at the granularity of a memory page,
which is typically 4 kBytes in size. An in-band (IB) agent
within the OS configures these policies via the VMX-root.
Write access on monitored pages generates Virtualization
Exceptions (VEs). With existing hardware, this causes the IB
agent to check/white-list the memory accessor. As a result of
this architecture, false-shared data structures (data on the
same 4K page) may cause a high volume of VE events that
have to be brute-force filtered by the IB agent. Other
examples of use cases where sub-page (less than 4K) region
protection is applicable are: memory mapped input/output
(MMIO) device memory areas for virtualization; page table
protection for sparse mappings in the page table; checkpoint-
ing VM memory; and any VMM architectures that support
memory monitoring application programming interfaces
(APIs) which are limited to a 4K granularity for VM intro-
spection.

BRIEF DESCRIPTION OF THE DRAWINGS

A Dbetter understanding of the present invention can be
obtained from the following detailed description in conjunc-
tion with the following drawings, in which:

FIG. 1A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention;

FIG. 1B is a block diagram illustrating both an exemplary
embodiment of an in-order architecture core and an exem-
plary register renaming, out-of-order issue/execution archi-
tecture core to be included in a processor according to
embodiments of the invention;

FIG. 2 is a block diagram of a single core processor and a
multicore processor with integrated memory controller and
graphics according to embodiments of the invention;

FIG. 3 illustrates a block diagram of a system in accor-
dance with one embodiment of the present invention;

FIG. 4 illustrates a block diagram of a second system in
accordance with an embodiment of the present invention;

FIG. 5 illustrates a block diagram of a third system in
accordance with an embodiment of the present invention;

FIG. 6 illustrates a block diagram of a system on a chip
(SoC) in accordance with an embodiment of the present
invention;

FIG. 7 illustrates a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention;

FIG. 8 illustrates one embodiment of an architecture for
fine grain memory protection;

FIG. 9 illustrates additional details employed in one
embodiment for fine grain memory protection;

FIG. 10 illustrates lookups performed in a hierarchical
table structure in one embodiment;

FIG. 11 illustrates one embodiment of a method for fine
grain memory protection; and

FIG. 12 illustrates an embodiment in which read (R), write
(W), execute disable (XD), and Dirty bits are expressed in the
64-bit vector.

DETAILED DESCRIPTION

In the following description, for the purposes of explana-
tion, numerous specific details are set forth in order to provide
a thorough understanding of the embodiments of the inven-

US 9,335,943 B2

3

tion described below. It will be apparent, however, to one
skilled in the art that the embodiments of the invention may be
practiced without some of these specific details. In other
instances, well-known structures and devices are shown in
block diagram form to avoid obscuring the underlying prin-
ciples of the embodiments of the invention.

Exemplary Processor Architectures and Data Types

FIG. 1A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention. FIG. 1B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and
an exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to
embodiments of the invention. The solid lined boxes in FIGS.
1A-B illustrate the in-order pipeline and in-order core, while
the optional addition of the dashed lined boxes illustrates the
register renaming, out-of-order issue/execution pipeline and
core. Given that the in-order aspect is a subset of the out-of-
order aspect, the out-of-order aspect will be described.

In FIG. 1A, a processor pipeline 100 includes a fetch stage
102, a length decode stage 104, a decode stage 106, an allo-
cation stage 108, a renaming stage 110, a scheduling (also
known as a dispatch or issue) stage 112, a register read/
memory read stage 114, an execute stage 116, a write back/
memory write stage 118, an exception handling stage 122,
and a commit stage 124.

FIG. 1B shows processor core 190 including a front end
unit 130 coupled to an execution engine unit 150, and both are
coupled to amemory unit 170. The core 190 may be a reduced
instruction set computing (RISC) core, a complex instruction
set computing (CISC) core, a very long instruction word
(VLIW) core, or a hybrid or alternative core type. As yet
another option, the core 190 may be a special-purpose core,
such as, for example, a network or communication core,
compression engine, coprocessor core, general purpose com-
puting graphics processing unit (GPGPU) core, graphics
core, or the like.

The front end unit 130 includes a branch prediction unit
132 coupled to an instruction cache unit 134, which is
coupled to an instruction translation lookaside buffer (TLB)
136, which is coupled to an instruction fetch unit 138, which
is coupled to a decode unit 140. The decode unit 140 (or
decoder) may decode instructions, and generate as an output
one or more micro-operations, micro-code entry points,
microinstructions, other instructions, or other control signals,
which are decoded from, or which otherwise reflect, or are
derived from, the original instructions. The decode unit 140
may be implemented using various different mechanisms.
Examples of suitable mechanisms include, but are not limited
to, look-up tables, hardware implementations, programmable
logic arrays (PL.As), microcode read only memories (ROMs),
etc. In one embodiment, the core 190 includes a microcode
ROM or other medium that stores microcode for certain mac-
roinstructions (e.g., in decode unit 140 or otherwise within
the front end unit 130). The decode unit 140 is coupled to a
rename/allocator unit 152 in the execution engine unit 150.

The execution engine unit 150 includes the rename/alloca-
tor unit 152 coupled to a retirement unit 154 and a set of one
or more scheduler unit(s) 156. The scheduler unit(s) 156
represents any number of different schedulers, including res-
ervations stations, central instruction window, etc. The sched-
uler unit(s) 156 is coupled to the physical register file(s)
unit(s) 158. Each of the physical register file(s) units 158
represents one or more physical register files, different ones

10

15

20

25

30

35

40

45

50

55

60

65

4

of'which store one or more different data types, such as scalar
integer, scalar floating point, packed integer, packed floating
point, vector integer, vector floating point, status (e.g., an
instruction pointer that is the address of the next instruction to
be executed), etc. In one embodiment, the physical register
file(s) unit 158 comprises a vector registers unit, a write mask
registers unit, and a scalar registers unit. These register units
may provide architectural vector registers, vector mask reg-
isters, and general purpose registers. The physical register
file(s) unit(s) 158 is overlapped by the retirement unit 154 to
illustrate various ways in which register renaming and out-
of-order execution may be implemented (e.g., using a reorder
buffer(s) and aretirement register file(s); using a future file(s),
a history buffer(s), and a retirement register file(s); using a
register maps and a pool of registers; etc.). The retirement unit
154 and the physical register file(s) unit(s) 158 are coupled to
the execution cluster(s) 160. The execution cluster(s) 160
includes a set of one or more execution units 162 and a set of
one or more memory access units 164. The execution units
162 may perform various operations (e.g., shifts, addition,
subtraction, multiplication) and on various types of data (e.g.,
scalar floating point, packed integer, packed floating point,
vector integer, vector floating point). While some embodi-
ments may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s) 156,
physical register file(s) unit(s) 158, and execution cluster(s)
160 are shown as being possibly plural because certain
embodiments create separate pipelines for certain types of
data/operations (e.g., a scalar integer pipeline, a scalar float-
ing point/packed integer/packed floating point/vector integer/
vector floating point pipeline, and/or a memory access pipe-
line that each have their own scheduler unit, physical register
file(s) unit, and/or execution cluster—and in the case of a
separate memory access pipeline, certain embodiments are
implemented in which only the execution cluster of this pipe-
line has the memory access unit(s) 164). It should also be
understood that where separate pipelines are used, one or
more of these pipelines may be out-of-order issue/execution
and the rest in-order.

The set of memory access units 164 is coupled to the
memory unit 170, which includes a data TLB unit 172
coupled to a data cache unit 174 coupled to a level 2 (L2)
cache unit 176. In one exemplary embodiment, the memory
access units 164 may include a load unit, a store address unit,
and a store data unit, each of which is coupled to the data TL.B
unit 172 in the memory unit 170. The instruction cache unit
134 is further coupled to a level 2 (L2) cache unit 176 in the
memory unit 170. The L2 cache unit 176 is coupled to one or
more other levels of cache and eventually to a main memory.

By way of example, the exemplary register renaming, out-
of-order issue/execution core architecture may implement the
pipeline 100 as follows: 1) the instruction fetch 138 performs
the fetch and length decoding stages 102 and 104; 2) the
decode unit 140 performs the decode stage 106; 3) the
rename/allocator unit 152 performs the allocation stage 108
and renaming stage 110; 4) the scheduler unit(s) 156 per-
forms the schedule stage 112; 5) the physical register file(s)
unit(s) 158 and the memory unit 170 perform the register
read/memory read stage 114; the execution cluster 160 per-
form the execute stage 116; 6) the memory unit 170 and the
physical register file(s) unit(s) 158 perform the write back/
memory write stage 118; 7) various units may be involved in
the exception handling stage 122; and 8) the retirement unit
154 and the physical register file(s) unit(s) 158 perform the
commit stage 124.

US 9,335,943 B2

5

The core 190 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif.; the ARM instruc-
tion set (with optional additional extensions such as NEON)
of ARM Holdings of Sunnyvale, Calif.), including the
instruction(s) described herein. In one embodiment, the core
190 includes logic to support a packed data instruction set
extension (e.g., AVX1, AVX2, and/or some form of the
generic vector friendly instruction format (U=0 and/or U=1),
described below), thereby allowing the operations used by
many multimedia applications to be performed using packed
data.

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
orthreads), and may do so in a variety of ways including time
sliced multithreading, simultaneous multithreading (where a
single physical core provides a logical core for each of the
threads that physical core is simultaneously multithreading),
or a combination thereof (e.g., time sliced fetching and
decoding and simultaneous multithreading thereafter such as
in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes sepa-
rate instruction and data cache units 134/174 and a shared .2
cache unit 176, alternative embodiments may have a single
internal cache for both instructions and data, such as, for
example, a Level 1 (L1) internal cache, or multiple levels of
internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor. Alter-
natively, all of the cache may be external to the core and/or the
processor.

FIG. 2 is a block diagram of a processor 200 that may have
more than one core, may have an integrated memory control-
ler, and may have integrated graphics according to embodi-
ments of the invention. The solid lined boxes in FIG. 2 illus-
trate a processor 200 with a single core 202A, a system agent
210, a set of one or more bus controller units 216, while the
optional addition of the dashed lined boxes illustrates an
alternative processor 200 with multiple cores 202A-N, asetof
one or more integrated memory controller unit(s) 214 in the
system agent unit 210, and special purpose logic 208.

Thus, different implementations of the processor 200 may
include: 1) a CPU with the special purpose logic 208 being
integrated graphics and/or scientific (throughput) logic
(which may include one or more cores), and the cores
202A-N being one or more general purpose cores (e.g., gen-
eral purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 202A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (through-
put); and 3) a coprocessor with the cores 202A-N being a
large number of general purpose in-order cores. Thus, the
processor 200 may be a general-purpose processor, coproces-
sor or special-purpose processor, such as, for example, a
network or communication processor, compression engine,
graphics processor, GPGPU (general purpose graphics pro-
cessing unit), a high-throughput many integrated core (MIC)
coprocessor (including 30 or more cores), embedded proces-
sor, or the like. The processor may be implemented on one or
more chips. The processor 200 may be a part of and/or may be
implemented on one or more substrates using any of'a number
of process technologies, such as, for example, BICMOS,
CMOS, or NMOS.

25

30

35

40

45

50

6

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache units
206, and external memory (not shown) coupled to the set of
integrated memory controller units 214. The set of shared
cache units 206 may include one or more mid-level caches,
such as level 2 (L.2), level 3 (L3), level 4 (1.4), or other levels
of cache, a last level cache (LLC), and/or combinations
thereof. While in one embodiment a ring based interconnect
unit 212 interconnects the integrated graphics logic 208, the
set of shared cache units 206, and the system agent unit
210/integrated memory controller unit(s) 214, alternative
embodiments may use any number of well-known techniques
for interconnecting such units. In one embodiment, coher-
ency is maintained between one or more cache units 206 and
cores 202-A-N.

In some embodiments, one or more of the cores 202A-N
are capable of multi-threading. The system agent 210
includes those components coordinating and operating cores
202A-N. The system agent unit 210 may include for example
apower control unit (PCU) and a display unit. The PCU may
be or include logic and components needed for regulating the
power state of the cores 202A-N and the integrated graphics
logic 208. The display unit is for driving one or more exter-
nally connected displays.

The cores 202A-N may be homogenous or heterogeneous
in terms of architecture instruction set; that is, two or more of
the cores 202A-N may be capable of execution the same
instruction set, while others may be capable of executing only
a subset of that instruction set or a different instruction set. In
one embodiment, the cores 202A-N are heterogeneous and
include both the “small” cores and “big” cores described
below.

FIGS. 3-6 are block diagrams of exemplary computer
architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs, per-
sonal digital assistants, engineering workstations, servers,
network devices, network hubs, switches, embedded proces-
sors, digital signal processors (DSPs), graphics devices,
video game devices, set-top boxes, micro controllers, cell
phones, portable media players, hand held devices, and vari-
ous other electronic devices, are also suitable. In general, a
huge variety of systems or electronic devices capable of
incorporating a processor and/or other execution logic as
disclosed herein are generally suitable.

Referring now to FIG. 3, shown is a block diagram of a
system 300 in accordance with one embodiment of the
present invention. The system 300 may include one or more
processors 310, 315, which are coupled to a controller hub
320. In one embodiment the controller hub 320 includes a
graphics memory controller hub (GMCH) 390 and an Input/
Output Hub (IOH) 350 (which may be on separate chips); the
GMCH 390 includes memory and graphics controllers to
which are coupled memory 340 and a coprocessor 345; the
IOH 350 is couples input/output (I/O) devices 360 to the
GMCH 390. Alternatively, one or both of the memory and
graphics controllers are integrated within the processor (as
described herein), the memory 340 and the coprocessor 345
are coupled directly to the processor 310, and the controller
hub 320 in a single chip with the IOH 350.

The optional nature of additional processors 315 is denoted
in FIG. 3 with broken lines. Each processor 310, 315 may
include one or more of the processing cores described herein
and may be some version of the processor 200.

The memory 340 may be, for example, dynamic random
access memory (DRAM), phase change memory (PCM), or a
combination of the two. For at least one embodiment, the
controller hub 320 communicates with the processor(s) 310,

US 9,335,943 B2

7

315 via a multi-drop bus, such as a frontside bus (FSB),
point-to-point interface such as QuickPath Interconnect
(QPI), or similar connection 395.

In one embodiment, the coprocessor 345 is a special-pur-
pose processor, such as, for example, a high-throughput MIC
processor, a network or communication processor, compres-
sion engine, graphics processor, GPGPU, embedded proces-
sor, or the like. In one embodiment, controller hub 320 may
include an integrated graphics accelerator.

There can be a variety of differences between the physical
resources 310, 315 in terms of a spectrum of metrics of merit
including architectural, microarchitectural, thermal, power
consumption characteristics, and the like.

In one embodiment, the processor 310 executes instruc-
tions that control data processing operations of a general type.
Embedded within the instructions may be coprocessor
instructions. The processor 310 recognizes these coprocessor
instructions as being of a type that should be executed by the
attached coprocessor 345. Accordingly, the processor 310
issues these coprocessor instructions (or control signals rep-
resenting coprocessor instructions) on a coprocessor bus or
other interconnect, to coprocessor 345. Coprocessor(s) 345
accept and execute the received coprocessor instructions.

Referring now to FIG. 4, shown is a block diagram of a first
more specific exemplary system 400 in accordance with an
embodiment of the present invention. As shown in FIG. 4,
multiprocessor system 400 is a point-to-point interconnect
system, and includes a first processor 470 and a second pro-
cessor 480 coupled via a point-to-point interconnect 450.
Each of processors 470 and 480 may be some version of the
processor 200. In one embodiment of the invention, proces-
sors 470 and 480 are respectively processors 310 and 315,
while coprocessor 438 is coprocessor 345. In another
embodiment, processors 470 and 480 are respectively proces-
sor 310 coprocessor 345.

Processors 470 and 480 are shown including integrated
memory controller (IMC) units 472 and 482, respectively.
Processor 470 also includes as part of its bus controller units
point-to-point (P-P) interfaces 476 and 478; similarly, second
processor 480 includes P-P interfaces 486 and 488. Proces-
sors 470, 480 may exchange information via a point-to-point
(P-P) interface 450 using P-P interface circuits 478, 488. As
shown in FIG. 4, IMCs 472 and 482 couple the processors to
respective memories, namely a memory 432 and a memory
434, which may be portions of main memory locally attached
to the respective processors.

Processors 470, 480 may each exchange information with
a chipset 490 via individual P-P interfaces 452, 454 using
point to point interface circuits 476, 494, 486, 498. Chipset
490 may optionally exchange information with the coproces-
sor 438 via a high-performance interface 439. In one embodi-
ment, the coprocessor 438 is a special-purpose processor,
such as, for example, a high-throughput MIC processor, a
network or communication processor, compression engine,
graphics processor, GPGPU, embedded processor, or the like.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 490 may be coupled to a first bus 416 via an
interface 496. In one embodiment, first bus 416 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present invention is not
so limited.

10

15

20

25

30

35

40

45

50

55

60

65

8

As shown in FIG. 4, various [/O devices 414 may be
coupled to first bus 416, along with a bus bridge 418 which
couples first bus 416 to a second bus 420. In one embodiment,
one or more additional processor(s) 415, such as coproces-
sors, high-throughput MIC processors, GPGPU’s, accelera-
tors (such as, e.g., graphics accelerators or digital signal pro-
cessing (DSP) units), field programmable gate arrays, or any
other processor, are coupled to first bus 416. In one embodi-
ment, second bus 420 may be a low pin count (LPC) bus.
Various devices may be coupled to a second bus 420 includ-
ing, for example, a keyboard and/or mouse 422, communica-
tion devices 427 and a storage unit 428 such as a disk drive or
other mass storage device which may include instructions/
code and data 430, in one embodiment. Further, an audio I/O
424 may be coupled to the second bus 420. Note that other
architectures are possible. For example, instead of the point-
to-point architecture of FIG. 4, a system may implement a
multi-drop bus or other such architecture.

Referring now to FIG. 5, shown is a block diagram of a
second more specific exemplary system 500 in accordance
with an embodiment of the present invention. Like elements
in FIGS. 4 and 5 bear like reference numerals, and certain
aspects of FIG. 4 have been omitted from FIG. 5 in order to
avoid obscuring other aspects of FIG. 5.

FIG. 5 illustrates that the processors 470, 480 may include
integrated memory and I/O control logic (“CL”) 472 and 482,
respectively. Thus, the CL. 472, 482 include integrated
memory controller units and include I/O control logic. FIG. 5
illustrates that not only are the memories 432, 434 coupled to
the CL. 472,482, but also that I/O devices 514 are also coupled
to the control logic 472, 482. Legacy 1/O devices 515 are
coupled to the chipset 490.

Referring now to FIG. 6, shown is a block diagram ofa SoC
600 in accordance with an embodiment of the present inven-
tion. Similar elements in FIG. 2 bear like reference numerals.
Also, dashed lined boxes are optional features on more
advanced SoCs. In FIG. 6, an interconnect unit(s) 602 is
coupled to: an application processor 610 which includes a set
of'one or more cores 202A-N and shared cache unit(s) 206; a
system agent unit 210; a bus controller unit(s) 216; an inte-
grated memory controller unit(s) 214; a set or one or more
coprocessors 620 which may include integrated graphics
logic, an image processor, an audio processor, and a video
processor; an static random access memory (SRAM) unit
630; a direct memory access (DMA) unit 632; and a display
unit 640 for coupling to one or more external displays. In one
embodiment, the coprocessor(s) 620 include a special-pur-
pose processor, such as, for example, a network or commu-
nication processor, compression engine, GPGPU, a high-
throughput MIC processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combina-
tion of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or pro-
gram code executing on programmable systems comprising
at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least
one input device, and at least one output device.

Program code, such as code 430 illustrated in FIG. 4, may
be applied to input instructions to perform the functions
described herein and generate output information. The output
information may be applied to one or more output devices, in
known fashion. For purposes of this application, a processing
system includes any system that has a processor, such as, for
example; a digital signal processor (DSP), a microcontroller,
an application specific integrated circuit (ASIC), or a micro-
processor.

US 9,335,943 B2

9

The program code may be implemented in a high level
procedural or object oriented programming language to com-
municate with a processing system. The program code may
also be implemented in assembly or machine language, if
desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the logic
O processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type of
disk including floppy disks, optical disks, compact disk read-
only memories (CD-ROMs), compact disk rewritable’s (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), phase change memory (PCM), mag-
netic or optical cards, or any other type of media suitable for
storing electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir-
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a target
instruction set. For example, the instruction converter may
translate (e.g., using static binary translation, dynamic binary
translation including dynamic compilation), morph, emulate,
or otherwise convert an instruction to one or more other
instructions to be processed by the core. The instruction con-
verter may be implemented in software, hardware, firmware,
ora combination thereof. The instruction converter may be on
processor, off processor, or part on and part off processor.

FIG. 7 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention. In the illustrated
embodiment, the instruction converter is a software instruc-
tion converter, although alternatively the instruction con-
verter may be implemented in software, firmware, hardware,
or various combinations thereof. FIG. 7 shows a program in a
high level language 702 may be compiled using an x86 com-
piler 704 to generate x86 binary code 706 that may be natively
executed by a processor with at least one x86 instruction set
core 716. The processor with at least one x86 instruction set
core 716 represents any processor that can perform substan-
tially the same functions as an Intel processor with at least one
x86 instruction set core by compatibly executing or otherwise
processing (1) a substantial portion of the instruction set of
the Intel x86 instruction set core or (2) object code versions of

20

25

30

40

45

50

55

10

applications or other software targeted to run on an Intel
processor with at least one x86 instruction set core, in order to
achieve substantially the same result as an Intel processor
with at least one x86 instruction set core. The x86 compiler
704 represents a compiler that is operable to generate x86
binary code 706 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 instruction set core 716. Similarly, FI1G.
7 shows the program in the high level language 702 may be
compiled using an alternative instruction set compiler 708 to
generate alternative instruction set binary code 710 that may
be natively executed by a processor without at least one x86
instruction set core 714 (e.g., a processor with cores that
execute the MIPS instruction set of MIPS Technologies of
Sunnyvale, Calif. and/or that execute the ARM instruction set
of ARM Holdings of Sunnyvale, Calif.). The instruction con-
verter 712 is used to convert the x86 binary code 706 into code
that may be natively executed by the processor without an x86
instruction set core 714. This converted code is not likely to be
the same as the alternative instruction set binary code 710
because an instruction converter capable of this is difficult to
make; however, the converted code will accomplish the gen-
eral operation and be made up of instructions from the alter-
native instruction set. Thus, the instruction converter 712
represents software, firmware, hardware, or a combination
thereof that, through emulation, simulation or any other pro-
cess, allows a processor or other electronic device that does
not have an x86 instruction set processor or core to execute
the x86 binary code 706.

Apparatus and Method for Fine Grain Memory
Protection

One embodiment of the invention reduces the volume of
memory violations due to page-sharing using techniques
which allow the VMM to write-protect sub-page regions of
any page. In one embodiment, each memory pageis 4 kin size
and the sub-page regions are 128B. However, the underlying
principles of the invention are not limited to any particular
sub-page region or page size.

In one embodiment, the permissions for each sub-page
region are maintained in a VMM-managed table. Witha 128B
granularity for sub-pages, no-write and no-execute permis-
sions may be expressed in a 64 bit value (e.g., with 2 bits
allocated to each sub-page, one indicating no-write and one
indicating no-execute).

FIG. 8 illustrates one embodiment comprisinga VMM 810
executed on a processor 820 to provide an execution environ-
ment for one or more OS kernels 801. In one embodiment, a
sub-page policy module 812 within the VMM (e.g., VMX-
root) implements the techniques described herein to generate
a sub-page memory view 813, indicating permissions for
sub-pages within each memory page. A security agent 803
(e.g., an in-band agent) executed within the OS kernel 801
utilizes the sub-page memory view 813 to determine which
pages and sub-pages need to be monitored. For example, as
discussed in detail below, each sub-page may have a write
permission bit to indicate whether writes to that sub-page are
permitted. Alternatively, a write-protect bit may be set to
indicate that writes are not permitted.

As a result, instead of processing every VE event directed
to a memory page 802, the security agent 803 is provided with
information that allows it to process only those events (e.g.,
write operations) directed to specific sub-pages within the
memory page 802. For example, in FIG. 8, only the sub-page
(s) within the highlighted region 805 of the memory page 802
are relevant to the security agent 803. Thus, the security agent

US 9,335,943 B2

11

803 processes VE events occurring within this region but
filters out events occurring in the other regions (e.g., because
write permissions are set for those sub-pages). Other memory
views 811 managed by the VMM represent standard memory
page views traditionally provided by the VMM to guest sys-
tems (e.g., such as kernel 801).

Additional details of one embodiment of the invention are
illustrated in FIG. 9 which shows a page table 900 with
mappings between memory page virtual addresses 901 (also
sometimes referred to a linear addresses) and physical
addresses 902 (also sometimes referred to as real addresses).
In one embodiment, the page table 900 comprises an
extended page table (EPT) employed in current x86 architec-
tures. Page walk logic 905 may perform a “page walk™ opera-
tion to access the page table 900 using a virtual address and
identify the physical address corresponding to that virtual
address. In one embodiment, the page walk logic 905 com-
prises a page miss handler (PMH) integrated within the
memory management unit of the processor. Once the physical
address is identified, the location of the memory page may be
accessed at the specified physical location in memory.

Various other components commonly used for virtual-to-
physical address translations are not illustrated in FIG. 9 to
avoid obscuring the underlying principles of the invention.
For example, page table entries may be cached in a translation
lookaside buffer (TLB) 909 within the processor for faster
access. If a page table entry is located within the TLB, the
physical address of the page may be determined directly by
the memory management unit (MMU) of the processor with-
outthe need for a page walk (which typically involves access-
ing the page table 900 from system memory and therefore
consumes significantly more cycles). The underlying prin-
ciples of the invention are the same regardless of whether
information related to the page is retrieved from the TLB 909
or directly from the page table 900.

In one embodiment of the invention, a SPP enable bit 903
included within each of the page table entries indicates
whether sub-page protection applies to the corresponding
memory page. For example, in the page table 900 in FIG. 9,
the SPP enable bit is set to 1 for the entries associated with
VA2 and VA3. In one embodiment, if SPP is enabled for a
particular page, then a sub-page protection (SPP) module 910
implements the techniques described herein to perform a
lookup in one or more sub-page protection tables 915. In one
embodiment, to perform the lookup, the sub-page protection
module 910 combines the physical address of the page (pro-
vided from the page walk module 905 or TLB 909) with a
sub-page protection table pointer (SPPTP) 912 which identi-
fies the base location of the SPPT 915 in memory. In one
embodiment, the SPPTP 912 is a 64-bit field within the virtual
machine control structure (VMCS) 911. However, the SPPTP
may be implemented in a variety of different ways while still
complying with the underlying principles of the invention.

In one embodiment, a write permission bit 904 (and poten-
tially one or more other permission bits) associated with each
page may also be used to determine permissions for that page
in combination with the sub-page protection table(s) 915. For
example, in one embodiment, the page-level permissions 904
are combined with the sub-page write protections (specified
in the SPPT 915) to determine the write permissions for each
sub-page. For example, in one embodiment, if the write per-
mission 904 for the page is set to 0, then writes are not
permitted for sub-pages unless the write permission bit is set
to 1 in the sub-page protection table. In another embodiment,
if the write permission 904 for the page is set to 0, then writes
are not permitted for sub-pages, regardless of the settings
indicated in the sub-page protection table. Similarly, if the

10

15

20

25

30

35

40

45

50

55

60

65

12

write permission 904 for the page is set to 1, then writes are
permitted for sub-pages unless the write permission bit is set
to 0 in the sub-page protection table 915. In another embodi-
ment, if the write permission 904 for the page is set to 1, then
writes are permitted for all sub-pages, regardless of the set-
tings indicated in the sub-page protection table. Thus, the
write permission bit 904 and sub-page protection bit may be
combined in various ways to determine write permissions for
each sub-page.

Inone embodiment, the SPPT 915 comprises a hierarchy of
tables, each of which is indexed by a different portion of a
memory page’s physical address. A lookup according to one
such embodiment is illustrated graphically in FIG. 10. As
illustrated in this embodiment, the SPPTP 912 is combined
with the highest physical address bits of the physical address
to identify an entry in a level 5 (L5) table. The address con-
tained in that entry is the base address for the level 4 (L4)
table. The entry in the [.4 table is located by combining the
base address with bits 39-47 of the physical address of the
page. The 14 entry identifies the base address of the L3 table
and is combined with bits 30-38 of the physical address to
identify the entry in the L3 table which contains the base
address of the L2 table. Bits 12-29 are then combined with
this base address to identify the entry in the [.2 table, which
identifies the base address of the L1 table. The 64-bit sub-
page (SP) vector containing all sub-page permissions for the
page is identified by combining the base address for the L1
table with bits 12-20 of the physical address. The write per-
mission bit is then identified within the 64-bit SP vector using
physical address bits 7-11. In one embodiment, the 64-bit SP
vector contains two bits associated with each sub-page, one to
indicate write permission (e.g., 1=write permitted; O=write
protected), and the other to indicate one or more additional
permissions for the sub-page (e.g., execute protection and/or
permissions).

It should be noted that the specific details are shown in FI1G.
10 for the purposes of explanation of one embodiment of the
invention. However, the underlying principles of the inven-
tion are not limited to the specific details shown in FIG. 10.
For example, the different address bits associated with each
memory page may be combined in alternate ways to perform
lookups in various different types of table structures (non-
hierarchical as well as hierarchical) while still complying
with the underlying principles of the invention.

A method in accordance with one embodiment of the
invention for determining sub-page protection is illustrated in
FIG. 11. The method may be implemented within the archi-
tectures described above, but is not limited to any particular
system architecture.

At 1001, the page table entry associated with a memory
page is retrieved. For example, as discussed above, the page
table entry may be read from the TLB or may be fetched from
the page table stored in memory. At 1102, a determination is
made as to whether sub-page protection is enabled. For
example, as mentioned above, a sub-page protection bit may
be set in the page table entry to indicate sub-page protection.
If sub-page protection is not enabled, then at 1105 only page-
level permissions/protections are implemented.

If sub-page protection is enabled, then at 1103, a lookup is
performed in a sub-page protection table (SPPT) to determine
permissions/protections associated with each sub-page. As
mentioned above, this may include write permissions,
execute permissions, or any other permissions/protections
capable of being implemented with respect to a sub-page. At
1104, the sub-page protection indication is combined with
page-level permissions/protections (if any) to arrive at a final
set of permissions for each sub-page.

US 9,335,943 B2

13

The following specific details are implemented to provide
sub-page protections/permissions in one embodiment of the
invention. It should be noted, however, that the underlying
principles of the invention are not limited to these specific
details.

In one embodiment, the SPP bit used in the page table
comprises a bit which is defined only for EPT paging-struc-
ture entries that map a page (e.g., 4 KB extended page table
(EPT) page table entries). The bit is ignored in other EPT
paging-structure entries.

As mentioned, accumulated page-level EPT write permis-
sions/protection may be combined with sub-page write per-
missions/protection to determine write permissions/protec-
tions for that sub-page. In one embodiment, the processor
checks this write permission and generates EPT violations as
appropriate.

Additional SPPT Lookup Features:

Ifan SPPT entry is not present, this may cause a new virtual
machine exit. In one embodiment, this would occur only for
lazy population of SPPT by VMM. On a miss, in one embodi-
ment, the physical address may be saved in the VMCS (to be
used as a cache for subsequent requests). A VM exit would
otherwise save data as EPT violations currently do (e.g., NMI
blocking, IDT vectoring, etc.)

If there is no miss, then the SPPT walk may identify a
32-bit write permission bitmap for page. The processor may
cache the bitmap in data translation lookaside buffer (DTLB)
or related/other structure for subsequent accesses.

SPPT Invalidation Features:

In one embodiment, the VMM may modify the sub-page
protection bits in the SPPT and may invalidate combined
mappings via the INVEPT instruction. This also causes flush
of cached sub-page permissions. In one embodiment, an
extended page table pointer (EPTP) switch (e.g., via execu-
tion of VMWRITE or VMFUNC instructions) may cause
flush of any information cached about sub-page permissions.
This may entail TLB flushing for address space 1D (ASID)
miss cases (e.g., with a new ASID being allocated). In one
embodiment, entries are also invalidated in non-ASID-tagged
structures (e.g., the data TLB, extended page directory
pointer (EPDP) and extended page directory entry (EPDE)
caches).

Address (A)/Data (D) Bit Update Handling:

In one embodiment, sub-page protection (SPP) pages are
considered “‘read-only” for guest paging structures and virtu-
alized advanced programmable interrupt controller (APIC)
accesses. For Intel Architecture (IA)-32 A/D-bit updates: (a)
Ifa guest A/D-bit update is to be made to an SPP page, an EPT
violation is generated; (b) the exit qualification is the same as
if the page had been read-only in the EPT (no new data); (c)
the VMM can handle such EPT violations with existing
mechanisms. For EPT A/D-bit architecture: (a) if EPT A/D
bits are enabled, guest page walks may be considered writes
for EPT; (b) ifthe EPT A/D bits are enabled, then a guest page
walk to an SPP page causes an EPT violation; (¢) an enlight-
ened OS that interfaces with a VMM to monitor OS page
tables can use subpage protection efficiently by pre-setting
A/D bits on pages containing critical mappings so that the
VMM does not have to emulate A/D updates on write-pro-
tected pages that have sub-page monitored regions.

Writes to Single Page, with Multiple Sub-Page Regions
Accessed:

One example of this is an 8-byte MOV that is 4-byte
aligned within a page. In one embodiment, the processor will
check the writeability of both sub-pages. If both sub-pages
are writeable, the write is allowed. If either sub-page is not
writeable, the write causes an EPT violation.

10

15

20

25

30

35

40

45

50

55

60

65

14

Writes Spanning Multiple Pages:

One example of this is an 8-byte MOV that is 4-byte
aligned straddling the page boundary. In one embodiment, the
processor will check whether either page has sub-page pro-
tections. If neither page has sub-page protections, the write is
handled normally per the EPT. If either page has sub-page
protections, the write causes an EPT violation.

Handling Instructions With Multiple Writes:

One example of this is the FXSAVE instruction which may
generate multiple writes to multiple pages. The processor
may treat store probes just like any other store. In one embodi-
ment, the processor will generate an EPT violation if specific
address probed is not writeable. This can result in EPT vio-
lations occurring after some data is written.

In one embodiment, a change store probes to cause EPT
violations if page probed has sub-page protection. In one
embodiment, the processor probes high and low bytes before
doing any writes.

APIC Virtualization Interaction:

Advanced Programmable Interrupt Controller (APIC)
interactions may result if the VMM configures an EPT PTE so
that the physical address is in the “APIC-access address” and
SPP=1. In one embodiment, this is considered an invalid
usage. The full APIC virtualization provides fine-grained
control without sub-page protection.

Interaction with EPTP Switching:

In one embodiment, the sub-page protection table pointer
(SPPTP) is not changed on an extended page table pointer
(EPTP) switch. The current use case requires specific EPT
hierarchies to have access to the ! W subpage. This is achieved
via EPTE SPP bit set to 0 for these EPT hierarchies.

In one embodiment, the SPPT may be switched via a new
VMFUNC instruction that switches the following via a
memory descriptor:

<CR3, EPT, SPPT> VMFUNC leaf 2
<CR3, EPT> VMFUNC leaf 1
<EPTP> VMFUNC leaf 0

Additional Embodiments

The architecture described above can be mapped to various
implementations. A straight mapping of the proposed archi-
tecture to a processor implementation is one that performs a
lookup of the SPPT due to the processor page miss handler
(PMH) walking a paging structure that has the SPP bit set in
the EPT structure. An alternate implementation embodiment
which does not require the SPP bit in the EPT is as follows.
The VMM allocates a chunk of contiguous memory area that
it reserves for use as a “sub-page monitorable pool” of pages.
When the OS or an OS service wants a page that either
requires subpage monitoring or is dynamically setup to be
monitored at the subpage level, the OS service requests that
the VMM assign one of these pool pages. The VMM maps the
global physical address (GPA) of the OS mapping (in the OS
PT), to the assigned page’s hidden physical address (HPA)
from the pool of pages. In some environments, the VMM may
copy the contents from original GPA page to the page
assigned from this pool. The VMM also programs one of the
processor’s range registers base and mask to cover the con-
tiguous memory region. The range register allows the proces-
sor to detect when a RW or X access is made to one of the
pages in the pool. The VMM additionally programs the SPPT
as defined in the architecture above to specify the per page
sub-page policies for all pages within this pool. In one

US 9,335,943 B2

15

embodiment, any RW or X access to any page within the
memory region causes a processor microcode assist in which
the CPU checks against the subpage policy for that HPA in the
SPPT, and allows or disallows the access.

Software Implementations:

In one embodiment, when sub-page permissions are
desired for a set of pages, the VMM populates the SPPT with
mappings for this set of pages specifying the subpage permis-
sion bit vector for each page. For accesses falling within
write-disallowed sub-page regions, the VMM handles
induced EPT violations or the guest software handles induced
virtualization exceptions (#VEs). For accesses falling within
write-allowed sub-page regions, no induced EPT violation or
#VE is generated.

Nested Virtualization Interactions:

In one embodiment, the root VMM may not be enabled for
SPPT. In this case, it doesn’t expose it and does not virtualize
it. In another embodiment, the root VMM is enabled for SPPT
butis notusing the SPPT itself but is virtualizing it. In another
embodiment, the root VMM is enabled for SPPT and is using
it itself, but is not exposing it to guest entities. Here there are
no SPPT nesting implications. In yet another embodiment,
the root VMM is enabled for SPPT, is using it itself, and is
exposing it to guest entities (e.g., virtualizing it). These last
two embodiments are described in greater detail in the below
sections.

Root VMM Enabled for SPPT, not Using it Itself, but
Virtualizing it:

In one embodiment, the root VMM shadows the SPPT
structure to keep all references to the HPA (including the
SPPT). Since the SPPT is accessed via general memory
access instructions, the root VMM will need to edit-control
SPPT guest memory pages. The guest VMM must perform an
INVEPT instruction (EPTP context) after updating the SPPT
which can be virtualized correctly by the root VMM. In one
embodiment, the INVEPT instruction clears any SPPT cache
(for the same scope), global, EPTP, and specific address (if
supported).

Root VMM Enabled for SPPT, Using it Itself, and Expos-
ing it to Guest:

In this embodiment, the root VMM shadows the SPPT
structure to keep all references to the HPA (including the
SPPT). For conflicting SPPT policies, the root VMM may
encode the most conservative combination into the SPPT
used by the processor for violations due to guest SPPT. The
root VMM may emulate #VE/VMexit to the guest VMM.
Since the SPPT is accessed via general memory access
instructions, the root VMM will need to edit-control the SPPT
guest memory pages. The guest VMM may perform an
INVEPT instruction (EPTP context) after updating the SPPT
which can be virtualized correctly by the root VMM. In one
embodiment, the INVEPT instruction may clear any SPPT
cache (for the same scope), global, EPTP, and specific address
(if supported).

FIG. 12 illustrates an SPP bit vector employed in one
embodiment of the invention in which read (R), write (W),
execute disable (XD), and dirty (D) bits can be expressed in a
64-bit vector. As illustrated, in one embodiment, the even bits
are used for determining W and XD indicators and the odd
bits are used for determining R and D indicators. The table
1202 illustrated in FIG. 12 shows the different results for
different values of R, W, and XD (e.g., with a value of 1
indicating enabled and a value of 0 indicating disabled). In
one embodiment, the CPU may simply update the DIRTY (D)
bit for the sub-page written to and may not cause a Fault.

Embodiments of the invention may include various steps,
which have been described above. The steps may be embod-

10

15

20

25

30

35

40

45

50

55

60

65

16

ied in machine-executable instructions which may be used to
cause a general-purpose or special-purpose processor to per-
form the steps. Alternatively, these steps may be performed
by specific hardware components that contain hardwired
logic for performing the steps, or by any combination of
programmed computer components and custom hardware
components.
As described herein, instructions may refer to specific con-
figurations of hardware such as application specific inte-
grated circuits (ASICs) configured to perform certain opera-
tions or having a predetermined functionality or software
instructions stored in memory embodied in a non-transitory
computer readable medium. Thus, the techniques shown in
the figures can be implemented using code and data stored
and executed on one or more electronic devices (e.g., an end
station, a network element, etc.). Such electronic devices
store and communicate (internally and/or with other elec-
tronic devices over a network) code and data using computer
machine-readable media, such as non-transitory computer
machine-readable storage media (e.g., magnetic disks; opti-
cal disks; random access memory; read only memory; flash
memory devices; phase-change memory) and transitory com-
puter machine-readable communication media (e.g., electri-
cal, optical, acoustical or other form of propagated signals—
such as carrier waves, infrared signals, digital signals, etc.). In
addition, such electronic devices typically include a setof one
or more processors coupled to one or more other components,
such as one or more storage devices (non-transitory machine-
readable storage media), user input/output devices (e.g., a
keyboard, a touchscreen, and/or a display), and network con-
nections. The coupling of the set of processors and other
components is typically through one or more busses and
bridges (also termed as bus controllers). The storage device
and signals carrying the network traffic respectively represent
one or more machine-readable storage media and machine-
readable communication media. Thus, the storage device of a
given electronic device typically stores code and/or data for
execution on the set of one or more processors of that elec-
tronic device. Of course, one or more parts of an embodiment
of the invention may be implemented using different combi-
nations of software, firmware, and/or hardware. Throughout
this detailed description, for the purposes of explanation,
numerous specific details were set forth in order to provide a
thorough understanding of the present invention. It will be
apparent, however, to one skilled in the art that the invention
may be practiced without some of these specific details. In
certain instances, well known structures and functions were
not described in elaborate detail in order to avoid obscuring
the subject matter of the present invention. Accordingly, the
scope and spirit of the invention should be judged in terms of
the claims which follow.
What is claimed is:
1. A method comprising:
performing a first lookup operation using a virtual address
to identify a physical address of a memory page, the
memory page comprising a plurality of sub-pages;

determining whether sub-page permissions are enabled for
the memory page;

if sub-page permissions are enabled, then performing a

second lookup operation to determine permissions asso-
ciated with one or more of the sub-pages of the memory
page; and

implementing the permissions associated with the one or

more sub-pages.

2. The method as in claim 1 wherein performing the first
lookup operation comprises retrieving the physical address
from a page table stored in a memory.

US 9,335,943 B2

17

3. The method as in claim 1 wherein performing the first
lookup operation comprises retrieving the physical address
from a translation lookaside buffer.
4. The method as in claim 1 wherein the memory page is 4
k in size and wherein each of the sub-pages are 128 B in size.
5. The method as in claim 1 wherein determining whether
sub-page permissions are enabled comprises:
identifying an entry in a page table or translation lookaside
buffer (TLB) associated with the memory page; and

reading at least one sub-page permission enable bit asso-
ciated with the entry, the sub-page permission enable bit
having a first value if permissions are enabled and a
second value if permissions are not enabled.
6. The method as in claim 5 wherein the second lookup
comprises:
determining a location for a sub-page protection table
(SPPT); and

querying the SPPT using the physical address associated
with the memory page to identify at least one sub-page
permission bit associated with at least one sub-page of
the memory page.

7. The method as in claim 6 wherein implementing the
permissions associated with the one or more sub-pages com-
prises:

determining whether read, write and/or execute operations

are permitted to a sub-page based on a value of the
corresponding permission bits associated with the sub-
page in the SPPT.

8. The method as in claim 7 wherein determining the loca-
tion for the SPPT comprises reading a sub-page protection
table pointer (SPPTP) stored in a virtual machine control
structure (VMCS) of a virtual machine monitor (VMM),
wherein at least a portion of the physical address of the
memory page is combined with the SPPTP to locate the
sub-page permission bit.

9. The method as in claim 6 wherein the SPPT comprises a
hierarchical set of tables and wherein different portions of the
physical address of the memory page are used to index each of
the different tables in the hierarchical set of tables and
wherein the hierarchical set of tables or portions thereof are
internally cached to improved performance.

10. An apparatus comprising:

a processor to execute program code and process data;

address translation logic on the processor to perform a first

lookup operation using a virtual address to identify a
physical address of a memory page, the memory page
comprising a plurality of sub-pages;

sub-page permission logic to determine whether sub-page

permissions are enabled for the memory page;

the sub-page permission logic to perform a second lookup

operation if sub-page permissions are enabled, to deter-
mine permissions associated with one or more of the
sub-pages of the memory page; and

the sub-page permission logic to implement the permis-

sions associated with the one or more sub-pages.

11. The apparatus as in claim 10 wherein performing the
first lookup operation comprises retrieving the physical
address from a page table stored in a memory.

12. The apparatus as in claim 10 wherein performing the
first lookup operation comprises retrieving the physical
address from a translation lookaside buffer.

13. The apparatus as in claim 10 wherein the memory page
is 4 k in size and wherein each of the sub-pages are 128 B in
size.

14. The apparatus as in claim 10 wherein determining
whether sub-page permissions are enabled comprises:

10

15

20

25

30

35

40

45

50

55

60

65

18

identifying an entry in a page table or translation lookaside
buffer (TLB) associated with the memory page; and

reading at least one sub-page permission enable bit asso-
ciated with the entry, the sub-page permission enable bit
having a first value if permissions are enabled and a
second value if permissions are not enabled.
15. The apparatus as in claim 14 wherein the second lookup
comprises:
determining a location for a sub-page protection table
(SPPT); and

querying the SPPT using the physical address associated
with the memory page to identify at least one sub-page
permission bit associated with at least one sub-page of
the memory page.

16. The apparatus as in claim 15 wherein implementing the
permissions associated with the one or more sub-pages com-
prises:

determining whether write operations are permitted to a

sub-page based on a value of the permission bit associ-
ated with the sub-page in the SPPT.
17. The apparatus as in claim 16 wherein determining the
location for the SPPT comprises reading a sub-page protec-
tion table pointer (SPPTP) stored in a virtual machine control
structure (VMCS) of a virtual machine monitor (VMM),
wherein at least a portion of the physical address of the
memory page is combined with the SPPTP to locate the
sub-page permission bit.
18. The apparatus as in claim 15 wherein the SPPT com-
prises a hierarchical set of tables and wherein different por-
tions of the physical address of the memory page are used to
index each of the different tables in the hierarchical set of
tables and wherein the hierarchical set of tables or portions
thereof are internally cached to improved performance.
19. A system comprising:
a virtual machine monitor (VMM);
one or more guest operating systems (OSs) executed within
one or more virtual machines (VMs) supported by the
VMM,

sub-page permission logic implemented by the VMM to
determine whether sub-page permissions are enabled for
a memory page;

the sub-page permission logic to perform a lookup opera-
tion if sub-page permissions are enabled, to determine
permissions associated with one or more of the sub-
pages of the memory page; and

an application executed within one of the OSs implement

the permissions associated with the one or more sub-
pages.
20. The system as in claim 19 wherein determining
whether sub-page permissions are enabled comprises:
identifying an entry in a page table or translation lookaside
buffer (TLB) associated with the memory page; and

reading at least one sub-page permission enable bit asso-
ciated with the entry, the sub-page permission enable bit
having a first value if permissions are enabled and a
second value if permissions are not enabled.
21. The system as in claim 20 wherein the lookup operation
comprises:
determining a location for a sub-page protection table
(SPPT); and

querying the SPPT using the physical address associated
with the memory page to identify at least one sub-page
permission bit associated with at least one sub-page of
the memory page.

22. The system as in claim 21 wherein implementing the
permissions associated with the one or more sub-pages com-
prises:

US 9,335,943 B2
19 20

determining whether write operations are permitted to a
sub-page based on a value of the permission bit associ-
ated with the sub-page in the SPPT.

23. The system as in claim 22 wherein determining the
location for the SPPT comprises reading a sub-page protec- 5
tion table pointer (SPPTP) stored in a virtual machine control
structure (VMCS) of the VMM, wherein at least a portion of
the physical address of the memory page is combined with the
SPPTP to locate the sub-page permission bit.

24. The system as in claim 21 wherein the SPPT comprises 10
a hierarchical set of tables and wherein different portions of
the physical address of the memory page are used to index
each of the different tables in the hierarchical set of tables.

#* #* #* #* #*

